Lectur 26:
Complexity Theory

Part 2 of 2



Recap from Last Time



The Complexity Class P

The complexity class P (polynomial time)
contains all problems that can be decided
(“solved”) in polynomial time.

Formally:

P = { L | There is a polynomial-time
decider for L }

Intuitively, P contains all decision problems
that can be solved efficiently.

This is like class R, except with “efficiently”
tacked onto the end.



The Complexity Class NP

The complexity class NP (nondeterministic
polynomial time) contains all problems that
can be verified in polynomial time.

Formally:

NP = { L | There is a polynomial-time
verifier for L }

Intuitively, NP is the set of problems where
“yes” answers can be checked efficiently.

This is like the class RE, but with “etficiently”
tacked on to the definition.



The Biggest Unsolved Problem in
Theoretical Computer Science:

P =NP




(if P # NP)

Undecidable Languages



(if P = NP)

CFL ' P=NP

Undecidable Languages



Adapting Our Techniques

 We already know R # RE. So does that
mean P # NP?

 To reason about what's in R and what's
in RE, we used two key techniques:

* Universality: TMs can simulate other TMs.

* Self-Reference: TMs can get their own
source code.

* Why can't we just do that for P and NP?



Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P = NP.

Proof: Take CS154!



So how are we going to
reason about P and NP?



New Stuff!



An Initial Observation



Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?



Reducibility



Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum maitching is a matching with the
largest number of edges.

A matching, but
not a maximum
mafching,




Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum maitching is a matching with the
largest number of edges.

A maximum .

mafching, < j i j




Maximum Matching

* Jack Edmonds' paper “Paths, Trees, and
Flowers” describes a polynomial-time
algorithm for finding maximum
matchings.

 He’s the guy from last time with the quote
about “better than decidable.”

e He’s also the Edmonds in “Cobham-Edmonds
Thesis.”

» Using this fact, what other problems can
we solve?



Domino Tiling

|




Solving Domino Tiling




Solving Domino Tiling




Solving Domino Tiling




bool canPlaceDominoes(Grid G, int k) {
return hasMatching(gridToGraph(G), k);

Which of the following is the most reasonable conclusion to
draw, given the existence of the above function?

A. Solving domino tiling on a 2D grid can’t be “harder”
than solving maximum matching.

B. Solving maximum matching can’t be “harder”
than solving domino tiling on a 2D grid.

C. Both A and B.

Answer at https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,
because if we can solve maximum
matching efficiently, we can solve domino
tiling efficiently.



Another Example



Satisfiability

* A propositional logic formula ¢ is called
satisfiable if there is some assignment to its
variables that makes it evaluate to true.

 Which of the following formulas are satisfiable?
P A(q
pA—p
p—(qA—q)

* An assignment of true and false to the variables
of ¢ that makes it evaluate to true is called a
satisfying assignment.



SAT

 The boolean satisfiability problem (SAT) is the
following:

Given a propositional logic
formula ¢, is @ satisfiable?

 Formally:

SAT = { (@) | @ is a satisfiable PL formula }

* Finding good algorithms for SAT is an active area of
research for reasons we’ll discuss later today.

« We have some pretty decent algorithms for solving
SAT reasonably quickly most of the time.

e Given this, what other problems can we solve?



Lights Out

* You're given a ring of
pushbuttons. Each
pushbutton has a light
that is either ON or OFF.

* If you push a button, it
toggles the state of the
two adjacent lights in the
ring. (Lights that are ON
turn OFF and vice-versa.)

* Question: Given an
initial configuration of

lights, can you turn all
the lights off?




In which of these rings can you
turn off all the lights?

Answer at

https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Solving Lights-Out With a SAT Solver



Observation 1: We never need
to press the same button twice.
Observation 2: Button press
order doesn’t matter.

Idea: Our propositional formula
will have one variable per
button, indicating whether we
press it.

Observation 3: A light that is
initially off stays off when an
even number of adjacent lights
are pressed.

Observation 4: A light that is
initially on ends off when an
odd number of adjacent lights
are pressed.




In Pseudocode

bool canTurnLightsOff(LightRing r) {
return isSatisfiable(ringToFormula(r));



Intuition:

Solving Lights Out can’t be “harder”
than solving SAT because if we can solve
SAT efficiently, we can solve Lights Out
efficiently.



bool canPlaceDominoes(Grid G, int k) {
return hasMatching(gridToGraph(G), k);

bool canTurnLightsOff(LightRing r) {
return isSatisfiable(ringToFormula(r));



bool solveProblemA(string input) {
return solveProblemB(translate(input));
}

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve
problem A.



bool solveProblemA(string input) {
return solveProblemB(translate(input));
}

« [f A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A =, B.

 We say that A is polynomial-time
reducible to B.

* Assuming that translate
runs in polynomial time.



bool solveProblemA(string input) {
return solveProblemB(translate(input));
}

« This is a powertul general problem-solving
technique. You’ll see it a lot in CS161.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.
e ITA spB and B € NP, then A € NP.

koo Dk
NP

W OW



This <, relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a difference.



Join the CS Belonging &
Engagement Committee for our

CODA STUDY TAKEOVER

for prospective and current CS students

Finals lock-in. Your friends, free Chick-fil-A,
and coffee + tea.

Wednesday, December 3rd 5-8p.m.
CODA Basement

SEE YOU THERE!

[—
u
R—
e

RSVP HERE

https://partiful.com/
e/UBC6MPFgaGNu
TLDE42iM




Don Knuth Lecture

 Don Knuth, a living legend in CS, is
giving his 29* annual Christmas Lecture
tomorrow (Thursday, December 4'") at
6 PM in Nvidia Auditorium.

* The topic is “Adventures with Knight’s
Tours,” which I expect will involve some
really neat tricks with graph theory.

 Highly recommended!



Final Exam Logistics

* Our final exam is Wednesday, December 10™ from
3:30 - 6:30 PM.

« Seating assignments will be online soon; we’ll make an
announcement when they’re ready.

« Expect seating assignments to change from the first two exams.

* The final exam is cumulative, covering topics from PSO - PS9
and LOO - L26. The format is similar to that of the midterms,
with a mix of short-answer questions and formal written
proofs.

« Like the midterms, it’s closed-book, closed-computer, and
limited-note. You can bring one double-sided 8.5” X 11” notes
sheet with you.

* Students needing alternate exam times: you should have heard
from us already with your exam time/location. Contact us
ASAP if you haven't.



Preparing for the Exam

« Kaia will be holding a review session Friday
from 4:30PM - 5:30PM in Thornton 102.

« This review session will be recorded, but we highly
recommend attending in person. You'll get way more
out of it if you do!

 We’ve also released the Cumulative Practice
Problems list, a gigantic searchable database of
problems you can use to brush up on whatever
topics you need the most practice with.

* As always, keep the TAs in the loop when
studying! That’s what we’re here for.



Back to CS103!



NP-Hardness and NP-Completeness



An Analogy: Running Really Fast



Fastest : Paula
: Tied f , I
runner in _ fa:?cestoirl‘l Radcliffe
CS103

CS103
Usain
I Bolt
S vt e
CS103 CS103-complete CS103-fast

For people A and B, we say A = B if
A’s top running speed is at most B’s top speed.
(Intuitively: B can run at least as fast as A.)

We say that person P is CS103-fast if
VA € CS103. A <. P.
(How fast are you if you’re CS103-fast?)

We say that person P is CS103-complete if
P € CS103 and P is CS103-fast.
(How fast are you if you’re CS103-complete?)



Hardest :
: Tied for ATI [
problei)m 1n — hardest in I

NP

LD
e v pAGES —

. P ) NP NP-complete NP-hard

For languages A and B, we say A =p B if
A reduces to B in polynomial time.
(Intuitively: B is at least as hard as A.)

We say that a language L is NP-hard it
VA e NP.A<,1I.
(How hard is a problem that’s NP-hard?)

We say that a language L is NP-complete if
L € NP and L is NP-hard.
(How hard is a problem that’s NP-complete?)



Intuition: The NP-complete problems are
the hardest problems in NP.

If we can determine how hard those
problems are, it would tell us a lot about
the P = NP question.



The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Intuition: This means the hardest
problems in NP aren’t actually that
hard. We can solve them in
polynomial time. So that means we
can solve all problems in NP in
polynomial time.




The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L. € P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A <p L. Since L € P and A <y L, we see that A € P. Since
our choice of A was arbitrary, this means that NP C P, so
P=NP. B

T
P =NP



The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P # NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L € NP. Therefore, we know
that LEe NPand L € P,soP # NP. &

NP
3

3
3



How do we even know NP-complete
problems exist in the first place?



Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT € NP, show how to
make a polynomial-time verifier for it. Key
idea: the certificate is a candidate satistying
assignment.

To show that SAT is NP-hard, given a
polymomial-time verifier V for an arbitrary NP
language L, for any string w you can construct
a polynomially-sized formula @(w) that says
“there’s a certificate ¢ where V accepts (w, ¢).”
This formula is satisfiable if and only if w € L,
so deciding whether the formula is satisfiable
decides whether wis in L. l-ish

Proof: Take CS154!



Why All This Matters

* Resolving P = NP is equivalent to just
figuring out how hard SAT is.

SATeP < P=NP

 We've turned a huge, abstract, theoretical
problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

* You can get a sense for how little we know
about algorithms and computation given
that we can't yet answer this question!



Sample NP-Hard Problems

« Computational biology: Given a set of genomes, what is the most
probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

« Game theory: Given an arbitrary perfect-information, finite, two-player
game, who wins? (Generalized geography problem)

* Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

« Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data. (Bayesian network
inference problem)

« Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can receive
transplants. (Cycle cover problem)

« Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible. (Processor scheduling problem)



Why All This Matters

* You will almost certainly encounter NP-hard
problems in practice - they're everywhere!

* If a problem is NP-hard, then there is no known
algorithm for that problem that

* is efficient on all inputs,
* always gives back the right answer, and
* runs deterministically.

* Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not

necessarily right, or have to work on really small
inputs.



Coda: What if P = NP is resolved?



Next Time

- Why All This Matters

- Where to Go from Here

« A Final “Your Questions”
* Parting Words!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

